Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Nuclear Medicine and Biology ; 114-115(Supplement):S64-S65, 2022.
Article in English | EMBASE | ID: covidwho-2305721

ABSTRACT

Objectives: In this study, we developed angiotensin-converting enzyme 2 (ACE2)-specific, peptide-derived 68Ga- and 18F-labeled radiotracers, motivated by the hypotheses that ACE2 is an important determinant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) susceptibility and that modulation of ACE2 in coronavirus disease 2019 (COVID-19) drives severe organ injury. Our current efforts are focusing on broader dissemination of ACE2-targeted PET radiotracers based on chelation of [18F]AlF enabling advanced murine and potentially human studies. Method(s): A series of NOTA-conjugated peptides derived from the known ACE2 inhibitor DX600 were synthesized, with variable linker identity. Since DX600 bears 2 cystine residues, both linear and cyclic peptides were studied. An ACE2 inhibition assay was used to identify lead compounds, which were labeled with 68Ga and 18F-AlF to generate the corresponding peptide radiotracers (68Ga-NOTA-PEP). The most potent 68Ga and 18F-AlF DX600 derivatives were subsequently studied in a humanized ACE2 (hACE2) transgenic model. Result(s): Cyclic DX-600-derived peptides had markedly lower half-maximal inhibitory concentrations than their linear counterparts. The 3 cyclic peptides with triglycine, aminocaproate, and polyethylene glycol linkers had calculated half-maximal inhibitory concentrations similar to or lower than the parent DX600 molecule. Peptides were readily labeled with 68Ga and 18F-AlF, and the biodistribution of both tracers was determined in an hACE2 transgenic murine cohort. Pharmacologic concentrations of coadministered NOTA-PEP (blocking) showed a significant reduction of 68Ga-NOTA-PEP4 signals in the heart, liver, lungs, and small intestine. Ex vivo hACE2 activity in these organs was confirmed as a correlate to in vivo results. The biodistribution of both tracers was similar, with apparent blocking observed in the lungs using the 18F-AlF peptide that needs to be verified via additional experiments. Conclusion(s): NOTA-conjugated cyclic peptides derived from the known ACE2 inhibitor DX600 retain their activity when N-conjugated for 68Ga or 18F-AlF chelation. In vivo studies in a transgenic hACE2 murine model using the lead tracer, 68Ga-NOTA-PEP4, showed specific binding in the heart, liver, lungs and intestine-organs known to be affected in SARS-CoV-2 infection. Blocking studies using the 18F-AlF labeled correlate showed modulation of PET signals in the normal lungs. These results suggest that 68Ga-NOTA-PEP4 or the 18F-AlF correlate could be used to detect organ-specific suppression of ACE2 in SARS-CoV-2-infected murine models and COVID-19 patients.Copyright © 2023 Southern Society for Clinical Investigation.

2.
Pathobiology ; : 1-11, 2022 Mar 28.
Article in English | MEDLINE | ID: covidwho-1765209

ABSTRACT

INTRODUCTION: Coronavirus disease 2019 (COVID-19) is a novel viral disease that spread as a global pandemic in 2020 by infecting millions of people across the world. Its clinical prognosis is dependent on various coagulatory parameters since thrombotic events are frequently associated with infection severity. METHODS: A total of 383 COVID-19 patients enrolled in Rajiv Gandhi Super Specialty Hospital, Delhi, India, were included in the present retrospective study. Patients were divided into three categories, severe (n = 141), moderate (n = 138), and mild (n = 104) based on infection severity. Various thrombotic parameters and anticoagulant levels were measured in 70 patients and further analyzed. RESULTS: Coagulopathy is seen in COVID-19 patients (n = 70) with a significant increase in fibrinogen, D-dimer levels, and prothrombin time in patients with severe and moderate disease compared to patients with a mild infection. Approximately, 70% of patients with severe and moderate disease demonstrated fibrinogen levels higher than the standard reference range. 60.41% of patients with severe disease showed significantly higher D-dimer levels. Thrombotic parameters were notably elevated in the nonsurvivors group compared to COVID-19 survivors. Nearly, 91% of patients with severe infection had anticoagulant protein S levels below the reference range. CONCLUSION: COVID-19 infection severely impacts the blood coagulation cascade, which might lead to the manifestation of severe symptoms and increased mortality in patients.

3.
Microb Pathog ; 158: 105008, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1253396

ABSTRACT

Coronavirus disease 2019 (COVID-19) transmits from person to person mainly through respiratory droplets and coughing. Infection severity ranges from asymptomatic and mild infection to those with moderate and severe symptoms which may lead to multiple organ failure and mortality. Infection severity largely depends on individual's immune response, age and co-morbidities. Present study categorized COVID-19 infected patients based on their infection severity and linked COVID-19 severity with age, gender and ABO blood group types. Clinical details of 383 COVID-19 patients were collected from Rajiv Gandhi Super Specialty hospital (RGSSH), India; divided into three groups; mild, moderate and severe patients, based on their symptoms. Present analysis revealed that age plays major role in infection severity, as the symptoms are more severe in patients above 45 years. Infection rate was higher in males compared to females. Most patients with A(+ve) and B(+ve) blood group were severely affected compared to those of blood group type O(+ve) and AB(+ve). O(+ve) blood group was least represented in severe patients. Present findings could be helpful in generating awareness amongst the population regarding susceptibility towards the COVID-19 infection. This supportive information would help clinicians and health workers to propose new strategies and tactical solution against COVID-19 infection.


Subject(s)
ABO Blood-Group System , COVID-19 , Comorbidity , Female , Humans , India/epidemiology , Male , Middle Aged , SARS-CoV-2
4.
Virusdisease ; 32(3): 589-594, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1252263

ABSTRACT

Novel coronavirus disease by SARS-CoV-2 virus (also known as COVID-19) has emerged as major health concern worldwide. While, there is no specific drugs for treating this infection till date, SARS-CoV-2 had spread to most countries around the globe. Nitric oxide (NO) gas serves as an important signaling molecule having vasodilatory effects as well as anti-microbial properties. Previous studies from the 2004 SARS-CoV infection demonstrated that NO may also help to reduce respiratory tract infection by inactivating viruses and inhibiting their replication cycle and is an effective supportive measure for treating infection in patients with pulmonary complications. NO gas inhalation is being suggested as potential therapy for managing severe acute respiratory distress syndrome in COVID-19 patients. In view of COVID-19 pandemic, several clinical trials are underway to examine the effects of NO inhalation on infected patients. Previously published reports on beneficial effects of endogenous NO and NO inhalation therapy were thoroughly searched to assess the potential of NO therapy for treating COVID-19 patients. Present report summarized the therapeutic importance of NO to reverse pulmonary hypertension, restore normal endothelial activity and produce anti-thrombotic effects. In addition to this, NO also reduces viral infection by inhibiting its replication and entry into the host cell. In absence of vaccine and effective treatment strategies, we suggest that NO inhalation therapy and NO releasing foods/compounds could be considered as an alternative measure to combat COVID-19 infection.

SELECTION OF CITATIONS
SEARCH DETAIL